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Abstract

A well-known result by Galois leaves no hope for an explicit algorithm based on elementary
computations and splitting a general polynom into factors with degree 1. This article describes
a method by Lagrange at least producing factors with only simple roots.

Most contents were originally found in a book by Georges Valiron.
Keywords: polynomial factorization, simple root, multiple root, square-free polynomial.

Given a polynomial P (X) = Xn + an−1X
n−1 + . . . + a1X + a0, n ⩾ 3, ai a complex number, the

Lagrange method determines explicit polynoms P1(X), P2(X), · · · , Pq(X) such that

P (X) = P1(X)× (P2(X))2 × · · · × (Pq(X))q

and each Pj (X) only has simple roots, or is the constant 1. It does not require to compute the roots
of P (X).

The separation of the roots when the coefficients of P (X) are real will be considered after the
description of the method.

Notation LCD(U (X),V (X)) designates one of the Lowest Common Divisors of two (non-zero)
polynoms U (X) et V (X). All possible values only differ by a non-zero constant factor.

Prerequisites
• Elementary polynomial computations, described for example by wikipedia, are sufficient

in order to apply the method, namely derivation (term after term), division (by decreasing
powers), and LCD (with Euclid’s algorithm). Most software tools implement them, but
they are easily applied manually to polynome with limited degrees.

• In order to read the proof, you need to understand classical properties of C[X], especially
the link between multiple roots and derivation, but also some abstract caracterisations of
the LCD of two non-zero polynoms.

1 Presentation of the method

1.1 Definition of the Pj(X) polynoms

Let P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0, n⩾ 3, ai some complex numbers.

Let x1, · · · ,xr be the (distinct) roots of P (X).
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Without any need to compute these roots, we know that

P (X) = (X − x1)h(1) × · · · × (X − xr )h(r) where root xk has multiplicity h(k).

Let q be the greatest of all h(k) in this equation, in other words the highest multiplicity order
among all roots of P (X).

For each integer j from 1 to q, let us define Pj (X) in all possible cases.

• If P (X) has no root of order j, Pj (X) = 1.

• If xi is the only root of P (X) of order j, Pj (X) = (X − xi ).

• If P (X) has at least two roots of order j, Pj (X) =
∏
i

(X − xi ), this product running over all

roots xi of P (X) with a multiplicity equal to j.

In the relation P (X) = (X − x1)h(1) × · · · × (X − xr )h(r), if at least two xi have the same order j,
let us consider

∏
i

(X − xi )j , this product covering all roots xi of P (x) with multiplicity j. Then

∏
i

(X − xi )j =

∏
i

(X − xi )

j =
(
Pj (X)

)j
.

so P (X) = P1(X)× (P2(X))2 × · · · ×
(
Pq(X)

)q
, where q is the highest multiplicity of a root of P (X).

Remark. When P (X) only has simple roots, this reads: P (X) = P1(X).

Remark. The definition of Pj (X) makes it explicit that Pj (X) can only have simple roots, and that
for j , k, Pj (X) and Pk(X) share no common root.

1.2 Main property

From now on, we will use shorter notations: P = P (X), P1 = P1(X), etc. Also P ′ will designate the
polynomial derivative of P . With these notations, P = P1P

2
2 · · ·P

q
q .

Property 1 ((proof at this end of this article)). With the notations above for the Pj polynoms, P =

P1P
2
2 · · ·P

q
q =

q∏
j=1

P
j
j implies

LCD(P ,P ′) = P2P
2
3 · · ·P

q−1
q =

q∏
j=2

P
j−1
j .

Remark. When P only has simple roots, this reads: LCD(P ,P ′) = 1.

1.3 Algorithm

Let

Q0 = P = P1P
2
2 · · ·P

q
q and

Q1 = LCD(Q0,Q
′
0) = P2 · · ·P

q−1
q according to the property above.
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It has allready been stated that all roots of Pj must be simple, and that Pj and Pk have no root in
common when j , k. So the roots of P2 are the roots of Q1 with multiplicity 1, and so on. . . the

roots of Pq are the roots of Q1 with multiplicity q − 1. Property 1 then applies to Q1 = P2 · · ·P
q−1
q

(with a shift in indices).

Q2 = LCD(Q1,Q
′
1) = P3 · · ·P

q−2
q and so on until

Qq−2 = LCD(Qq−3,Q
′
q−3) = Pq−1P

2
q

Qq−1 = LCD(Qq−2,Q
′
q−2) = Pq and finally

Qq = LCD(Qq−1,Q
′
q−1) = 1 because all roots of Pq are simple

The Qi polynomials can be computed by polynomial derivation, then determination of a
LCD of two non-zero polynomials (for example with Euclid’s algorithm), without computing the
roots of P (X), or prior knowledge of the Pj polynomials. The algorithm stops when the LCD is a
constant. The number of iterations then determines the value of q, and the last non-constant LCD
gives the value of Pq.

By construction, Qt = Pt+1 · · ·PqQt+1 for t from 0 to q − 2. Let Rt be the quotient of Qt by its
successor.

R1 =
Q0
Q1

= P1 · · ·Pq

R2 =
Q1
Q2

= P2 · · ·Pq and so on until

Rq−1 =
Qq−2

Qq−1
= Pq−1Pq and finally

Rq =
Qq−1

Qq
= Pq already known, and consistent since Qq = 1

Each Pj is then the quotient of Rj by Rj+1 for j from 1 to q − 1.

P1 =
R1
R2

P2 =
R2
R3

and so on until

Pq−1 =
Rq−1

Rq

Pq = Rq is already known

This effective process leads to an explicit factorization P = P1P
2
2 · · ·P

q
q ,. The search of root of

P is then split in smaller searches for the roots of each Pj , which are all simple roots (of course,
the final product can omit the factors where Pj = 1). Moreover, when P has at least a multiple
root, the degree of each Pj is strictly inferior to the degree of P , leading to new computing
opportunities.

The algorithm is summarized formally by

Q0 = P Qi+1 = LCD(Qi ,Q
′
i ) Ri+1 =

Qi

Qi+1
Pi+1 =

Ri+1
Ri+2

and the following pseudo-code, parametrized by the polynom p that we want to factorize and a
procedure process describing what we intend to with the resulting factors.
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q1 := lcd (p, derivative (p));

r1 := exact_division (p, q1);

loop

q2 := lcd (q1, derivative (q1));

r2 := exact_division (q1, q2);

process (exact_division (r1, r2));

exit when degree (q1) = 0;

q1 := q2;

r1 := r2;

end loop;

For practical purposes, it is worth mentioning that most software libraries provide an alternative
division wich performs much faster when the remainder is known in advance to be zero.

1.4 Example
This case study is an addition to the original book by Georges Valiron. The initial degree is 4 so
the roots could, tediously, be computed with direct methods.

P = X4 +X3 − 3X2 − 5X − 2 = Q0, so Q′0 = 4X3 + 3X2 − 6X − 5.
Q1 = LCD(Q0,Q

′
0) = X2 + 2X + 1 (either with a symbolic computing software or with Euclid’s

algorithm), Q′1 = 2X + 2
Q2 = LCD(Q1,Q

′
1) = X + 1, Q′2 = 1.

Q3 = LCD(Q2,Q
′
2) = 1, leading to q = 3, and P3 = Q2 = X + 1.

At this step, P = Q0 = X4 +X3 −3X2 −5X −2, Q1 = X2 + 2X + 1, Q2 = X + 1 = P3 and q = 3. We
can now proceed:

R1 =
Q0
Q1

= X2 −X − 2

R2 =
Q1
Q2

= X + 1 and finally

R3 = P3 = X + 1

This allows to compute:

P1 =
R1
R2

=
X2 −X − 2

X + 1
= X − 2

P2 =
R2
R3

=
X + 1
X + 1

= 1 and

P3 = X + 1 which was already known

Finally: P = (X − 2).(X + 1)3 (omitting P2 = 1).

As far as the authors can tell with only partial copies of the original book by
Georges Valiron, the following material was not explicitly covered there.

2 Case of real polynomials

2.1 Validity of the method
The process only requires derivations, divisions and computations of a lowest common divisor.
Because such operations produce real results from real arguments, when P has real coefficients,
so are all intermediate results, especially the final Pj polynomials.
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2.2 Separation of the roots
The Pj polynomials may simplify the classical problem of separating the roots of P (X) ∈ R[X].

For example, it is common when applying the Sturm theorem, to replace P with

R1 =
P

LCD(P ,P ′)

in order to avoid multiple roots. The new polynom R1 has the same roots than P , but for R1
these are all simple roots

Lagrange’s method extends this idea, and, when possible, splits R1 into real polynoms of
smaller degree, to which the Sturm theorem applies separately. Of course, a smaller degree
allows new opportunities, like the determination of an exact formula for some roots.

2.3 Approximation of the roots
Many methods for the approximation of roots of numerical equations, like Newton’method,
are subject to numeric instability when encountering an horizontal tangent. For polynomial
equations, Lagrange’s method transforms this problematic case into an optimization, because
the equation can then be replaced with separate equations with a strictly smaller degree and
only simple roots.

3 Proof of property 1
We will only need the following classical properties in C[X].

1. When P only has simple roots, P and P ′ have no common root. Now recall that in C[X],
two polynoms without common root have a LCD equal to 1, in this case LCD(P ,P ′) = 1.

2. When P has a multiple root, let D(X) =
∏
i

(X−xi )h(i)−1, the product covering all roots xi of

P with multiplicity h(i) ⩾ 2. When xi is the only root of P with multiplicity h(i) ⩾ 2, D(X)
equals (X − xi )h(i)−1

(a) The roots shared by P and P ′ are exactly the roots of P with multiplicity at least 2.
(b) Each root xi with multiplicity h(i) ⩾ 2 of polynom P is also root with multiplicity

h(i)− 1 of its derivative P ′ .
(c) These two properties imply that P = D×H and P ′ = D×N , where H and N are non-zero

polynomials sharing neither roots nor (non constant) divisors.
(d) Since P = D ×H , P ′ = D ×N , H and N have no common divisor, it follows that D is a

LCD of P and P ′ .
(e) Finally, let us gather the (X − xi )j factors in D(X) as done in P (X) in section 1. The

definition of the Pj now reads

D = P2P
2
3 · · ·P

q−1
q =

q∏
j=2

P
j−1
j .


